Homogeneous line bundles over a toroidal group
نویسندگان
چکیده
منابع مشابه
Principal Toroidal Bundles over Cauchy - Riemann Products
The main result we obtain is that given t N M a TS-subbundle of the generalized Hopf fibration t H2+’cP over a Cauchy-Riemann product M _ cP, i.e. N _ H is a diffeomorphism on fibres and oj= ot, if s is even and N is a closed submanifold tangent to the structure vectors of the canonical 5Zstructure on H then N is a Cauchy-Riemann submanifold whose Chen class is non-vanishing.
متن کاملHomogeneous bundles over abelian varieties
We obtain characterizations and structure results for homogeneous principal bundles over abelian varieties, that generalize work of Miyanishi and Mukai on homogeneous vector bundles. For this, we rely on notions and methods of algebraic transformation groups, especially observable subgroups and anti-affine groups.
متن کاملHomogeneous projective bundles over abelian varieties
We consider those projective bundles (or Brauer-Severi varieties) over an abelian variety that are homogeneous, i.e., invariant under translation. We describe the structure of these bundles in terms of projective representations of commutative group schemes; the irreducible bundles correspond to Heisenberg groups and their standard representations. Our results extend those of Mukai on semi-homo...
متن کاملLine Bundles over Quantum Tori
This text is a modified version of a chapter in a PhD thesis [26] submitted to Nottingham University in September 2006, which studied an approach to Hilbert’s twelfth problem inspired by Manin’s proposed theory of Real Multiplication [12]. Following our study in [27], motivated by the theory of Line Bundles over Complex Tori, we define a non-trivial cohomological notion of Line Bundles over Qua...
متن کاملBig line bundles over arithmetic varieties
5 Equidistribution Theory 26 5.1 A Generic Equidistribution Theorem . . . . . . . . . . . . . . . . . . . . . . 27 5.2 Equidistribution at Infinite Places . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3 Equidistribution at Finite Places . . . . . . . . . . . . . . . . . . . . . . . . 32 5.4 Equidistribution of Small Subvarieties . . . . . . . . . . . . . . . . . . . . . . 35 5.5 Equidist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nagoya Mathematical Journal
سال: 1989
ISSN: 0027-7630,2152-6842
DOI: 10.1017/s0027763000001665